Abstract

Steady-state moving crack under mode-I loading is studied with a modified cohesive zone model which addresses speed-dependent role of the normal stress parallel to the crack axis and the non-uniformity of traction force in cohesive zone. Unlike the classical Dugdale model which predicts independence of the cohesive zone size on crack speed, the present model predicts that the cohesive zone size strongly depends on crack speed. Comparison with some known experimental data suggests that the present model has the potential to capture the speed effects on moving cracks in ductile materials especially at high crack speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.