Abstract

To improve the performance of sensorless induction motor (IM) drives, an adaptive speed and flux estimation method based on the multiple-model extended Kalman filter (EKF) with Markov chain for IMs is proposed in this paper. In this algorithm, the multiple model EKF for speed and flux estimation is established, and the transition of the models obeys the Markov chain and the estimation value is obtained by mixing the outputs of different models in different weightings, and the calculation of the weighting is researched. Simultaneously, the transition probability can be continuously self-tuned by the residual sequence, the prior information is modified by the posterior information, and the more accurate transition among the models is obtained. Therefore, the proposed method improves the model adaptability to the actual systems and the environmental variations, and reduces the speed estimation error. The correctness and the effectiveness of the proposed method are verified by the simulation and experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.