Abstract

Circulating signals like the acidic derivative of vitamin A: retinoic acid (RA) may regulate resident stem cells in the adult nervous system, particularly in the olfactory pathway. RA is an essential factor for inducing neural stem or precursor cells that give rise to olfactory receptor neurons (ORNs) and olfactory bulb (OB) interneurons (OBINs) during embryonic development. Similar precursors in the adult brain constantly generate new ORNs and OBINs, and embryonic signaling pathways, like that via RA, may be retained or reactivated for this purpose. We have shown that RA regulates neural precursors in the embryonic and adult olfactory pathway. Moreover, RA administration after olfactory system damage stimulates an immune response and yields a more rapid recovery of olfactory-guided behavior. We suggest that olfactory integrity may be maintained by RA-mediated regulation of neurogenesis as well as local immune responses, and that aging compromises these mechanisms. The chemical senses, particularly olfaction, decline in aged individuals, and RA (via vitamin A) levels may also decline, perhaps due to changes in appetite and food intake. This synergy may result in a high prevalence of olfactory pathology in aged individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.