Abstract

To solve the problems of poor performance of traditional spectrum sensing method under low signal‐to‐noise ratio, a new spectrum sensing method based on Empirical Mode Decomposition algorithm and K‐means clustering algorithm is proposed. Firstly, the Empirical Mode Decomposition algorithm and the wavelet threshold algorithm are used to remove the noise components in the spectrum sensing signal, and K‐means clustering algorithm is used to determine whether the primary user exists. The method can remove the redundant components such as noise in the nonstationary or nonlinear sampling signal in the real environment and does not need to know the prior information such as signal, channel, and noise, so it can well handle the complicated sensing signal in real environment. This method can reduce the impact of noise on the spectrum sensing system and thus can improve the sensing performance of the system. In the experimental part, the difference between maximum and minimum eigenvalues and the difference between the maximum eigenvalue and the average energy in the random matrix are selected as signal features. Experiments also show that the proposed method is better than the traditional spectrum sensing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.