Abstract
Fibulin-3 (FBLN3), also known as EFEMP1, is a secreted extracellular matrix (ECM) glycoprotein that contains forty cysteine residues. These cysteines, which are distributed across one atypical and five canonical calcium-binding epidermal growth factor (EGF) domains, are important for regulating FBLN3 structure, secretion, and presumably function. As evidence of this importance, a rare homozygous p.C55R mutation in FBLN3 negates its function, alters disulfide bonding, and causes marfanoid syndrome. Additional studies suggest that heterozygous premature stop codon mutations in FBLN3 may also cause similar, albeit less severe, connective tissue disorders. Interestingly, a series of twenty-four cysteine mutations in FBLN3 have been identified in the human population and published in the Clinical Variation (ClinVar) and gnomAD databases. We tested how seven of these cysteine mutants (five loss-of-cysteine variants: C42Y, C190R, C218R, C252F, and C365S, two gain-of-cysteine variants: R358C, Y369C) and two newly developed mutations (G57C and Y397C) altered FBLN3 secretion, disulfide bonding, MMP2 zymography, and stress response activation Surprisingly, we found a wide variety of biochemical behaviors: i) loss-of-cysteine variants correlated with an increased likelihood of disulfide dimer formation, ii) N-terminal mutations were less likely to disrupt secretion, and were less prone to aggregation, iii) in contrast to wild-type FBLN3, multiple, but not all variants failed to induce MMP2 levels in cell culture, and iv) C-terminal mutations (either loss or gain of cysteines) were more prone to significant secretion defects, intracellular accumulation/misfolding, and stress response activation. These results provide molecular and biochemical insight into FBLN3 folding, secretion, and function for many cysteine mutations found in the human population, some of which may increase the likelihood of subclinical connective tissue or other FBLN3-associated haploinsufficiency diseases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.