Abstract

During individuated finger movements, a high proportion of synchrony effects was found in spike-triggered averages (SpikeTAs) of rectified electromyographic activity aligned on the spikes discharged by primary motor cortex (M1) neurons. Because synchrony effects can be produced even if the trigger neuron itself provides no direct synaptic connections to motoneurons, such nonoscillatory synchrony effects often are discounted when considering control of motoneuron pools. We therefore examined the distinctions between pure postspike effects and synchrony effects. The criteria usually applied to distinguish pure and synchrony effects-onset latency and peak width-failed to separate the present SpikeTA effects objectively into distinct subpopulations. Synchrony effects generally were larger than pure effects. Many M1 neurons produced pure effects in some muscles while producing synchrony effects in others. M1 neurons producing no effects, only pure effects, only synchrony effects, or both pure and synchrony effects did not fall into different groups based on discharge characteristics during finger movements. Nor were neurons producing different types of SpikeTA effects segregated spatially in M1. These observations suggest that neurons producing pure and synchrony SpikeTA effects come from similar M1 populations. We discuss potential mechanisms that might have produced a continuous spectrum of variation from pure to synchrony effects in the present monkeys. Although synchrony effects cannot be taken as evidence of mono- or disynaptic connections from the recorded neuron to the motoneuron pool, the functional linkages indicated by synchrony effects represent a substantial fraction of M1 input to motoneuron pools during skilled, individuated finger movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.