Abstract

We report an iron-based graphite-conjugated electrocatalyst (GCC-FeDIM) that combines the well-defined nature of homogeneous molecular electrocatalysts with the robustness of a heterogeneous electrode. A suite of spectroscopic methods, supported by the results of DFT calculations, reveals that the electrode surface is functionalized by high spin (S = 5/2) Fe(III) ions in an FeN4Cl2 coordination environment. The chloride ions are hydrolyzed in aqueous solution, with the resulting cyclic voltammogram revealing a Gaussian-shaped wave assigned to 1H+/1e- reduction of surface Fe(III)-OH surface. A catalytic wave is observed in the presence of NO3-, with an onset potential of -1.1 V vs SCE. At pH 6.0, GCC-FeDIM rapidly reduces NO3- to ammonium and nitrite with 88 and 6% Faradaic efficiency, respectively. Mechanistic studies, including in situ X-ray absorption spectroscopy, suggest that electrocatalytic NO3- reduction involves an iron nitrosyl intermediate. The Fe-N bond length (1.65 Å) is similar to that observed in {Fe(NO)}6 complexes, which is supported by the results of DFT calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call