Abstract

FTIR, UV-vis, steady state and time-resolved fluorescence measurements show that harmane (1-methyl-9 H-pyrido/3,4- b/indole) interacts with pyrimidine and its isomers pyrazine and pyridazine in its ground and lowest singlet states. The mechanisms of interaction are dependent on both the structure of the diazine and the nature of the solvent. Thus, in a low polar solvent such as toluene, harmane forms ground state 1:1 hydrogen-bonded complexes with all the diazines. These complexes quench the fluorescence of harmane and diminish its fluorescence lifetime. Conversely, in buffered (pH 8.7) aqueous solutions, pyrimidine behaves differently from the other diazines. Thus, whereas pyrimidine only interacts with harmane in its ground state, pyrazine and pyridazine also interact in the excited state. The harmane–pyrimidine ground state interaction is an entropic controlled process. Therefore, we propose the formation of π–π stacked 1:1 complexes between these substrates. Association constants for the different types of complexes and quenching parameters are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.