Abstract

Tetraethyl orthosilicate (TEOS)-based gels were doped with two optically active organic indicators, thionin and nile blue A. Before trapping in a sol-gel host, thionin and nile blue A were both evaluated for solvent and protonation effects on their spectral properties. Only extreme pH values provided by HCl, NaOH, and NH4OH produced new absorption and/or fluorescence bands. Introduction of nile blue A into alkaline environments (0.1N NaOH, NH4OH) results in the appearance of a broad absorption band centered near 520 nm whereas highly acidic environments (1N HCl) show a reduction of the 635 nm absorption peak accompanied by an absorption band located near 460 nm. A marked decrease is observed in the optical density of thionin in 1N HCl solution which results in a reduction in the fluorescence intensity. The absorption and fluorescence spectra also reveal a decrease in a pH 11 solution of NH4OH as compared to neutral conditions. Both dyes formed dimers when the sol-gel host, initially synthesized with TEOS, was organically modified with methyltrimethoxysilane (MTMS). However, thionin dimers were present in all silica-based sol-gel compositions, as evidenced by the absorption and fluorescence spectra. Substitution of MTMS for some of the TEOS in the gel matrix resulted in blue shifts in the absorption and fluorescence spectra of nile blue A. The absorption peak shifted 50 nm to 596 nm whereas the fluorescence shifted around 40 nm to 635 nm. These blue shifts resulted from the reduced polarity of the silica-based xerogel. Thionin also exhibited shifts in its absorption and fluorescence spectra with organic modification by MTMS. The absorption shifted approximately 3 nm to 595 nm while the fluorescence maximum decreased 7 nm to 630 nm. The blue shifts in the spectra of thionin with additions of MTMS were attributed to surface sites that altered the molecular structure of the adsorbed thionin molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.