Abstract

Diverse welding processes have been utilized in manufacturing industry for years. But up to date, welding quality still cannot be guaranteed, due to the lack of an efficient and on-line welding defects monitoring method, and this leads to increased manufacturing costs. In this paper, a method based on feature extraction and machine learning algorithm for on-line quality monitoring and defects classification was presented. Plasma radiation was captured by an optical fiber probe, and delivered by an optical fiber to the spectrometer. The captured spectral signal was processed by selecting sensitive emission lines and extracting features of spectral data's evolution, which realized spectral data compression with low computational cost. After selecting the proper training data set, the designed ANN and SVM allows automatic detection and classification of welding defects. The validity of proposed method was successfully approved by test data set in welding experiments. Welding experiments on galvanized steel sheets showed the corresponding relationship between the output of classifiers and welding defects. Finally, the two classifiers were compared. Experiments indicated the performance of ANN is slightly better than that of SVM, while both of them have its own advantages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call