Abstract

Variable angle spectroscopic ellipsometry (VASE) has been used in the photon energy range 1.25–5.0 eV to study the structure and optical properties of cerium dioxide (CeO2) films. Both amorphous and highly oriented crystalline films were grown on sapphire by rf magnetron sputtering. The crystallinity, chemical structure, and surface morphology of the films were studied by x-ray diffraction, x-ray photoelectron spectroscopy, and atomic force microscopy, respectively. The measured VASE spectra on a series of films with different thicknesses were analyzed by using multiple optical models. In this way, the complex refractive index N=n+ik of CeO2, the film thicknesses, and the surface roughness of the different films could be determined. The ellipsometrically deduced refractive index spectrum was observed to be strongly dependent on the film structure. Highly oriented crystalline CeO2 films exhibited a higher refractive index and a higher band gap energy than the amorphous film. The surface roughness of the crystalline films increased with film thickness. The optical dispersion relations have also been analyzed by line-shape fitting with a modified Lorentz oscillator model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call