Abstract

We report the results of a spectropolarimetric observation of the C IV mini-BAL in the quasar HS1603+3820. The observations were carried out with the FOCAS instrument on the Subaru telescope and yielded an extremely high polarization sensitivity of 0.1%, at a resolving power of 1500. HS1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C IV mini-BAL profile. Using the monitoring observations, in an earlier paper we were able to narrow down the causes of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber, and (2) a variable, highly-ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (a) the polarization level is very small (p~0.6%) throughout the spectrum, and (b) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C IV mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.