Abstract

Ocean colour sensors traditionally are of fixed spectral channel systems with specified bandwidth of about 20 nm in the visible region and about 40 nm in Near Infrared region. In these systems, it is known that a radiometric error of 1% in the measurement of top of the atmosphere signal may lead to an error of 10% in the retrieved ocean upwelling radiance. In this paper we investigated the range of wavelengths participating in signal collection (effective spectral pass band, ESPB) using relative spectral response data of various sensors flown earlier. ESPB values were computed for each spectral channel for various percentages of signal and the results showed that they are quite high compared to bandwidths specified. These values were found to vary with sensor and channel. ESPB shall be small for accurate computation of spectral radiance. As the knowledge of spectral profile of the signal in the range of ESPB helps in better estimation of spectral radiance at the intended wavelengths, a miniature high performance linear variable filter based hyperspectral sensor is proposed as an alternative. We present here the design concept and report the estimated performance of such sensor that can be realized even with commercial off the shelf components for operational implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.