Abstract

A new spectrally formulated plate element is developed to study wave propagation in composite structures. The element is based on the classical lamination plate theory. Recently developed method based on singular value decomposition (SVD) is used in the element formulation. Along with this, a new strategy based on the method of solving polynomial eigenvalue problem (PEP) is proposed in this paper, which significantly reduces human intervention (and thus human error), in the element formulation. The developed element has an exact dynamic stiffness matrix, as it uses the exact solution of the governing elastodynamic equation of plate in frequency–wavenumber domain as the interpolating functions. Due to this, the mass distribution is modeled exactly, and as a result, a single element captures the exact frequency response of a regular structure, and it suffices to model a plate of any dimension. Thus, the cost of computation is dramatically reduced compared to the cost of conventional finite element analysis. The fast Fourier transform (FFT) and Fourier series are used for inversion to time–space domain. This element is used to model plate with ply drops and to capture the propagation of Lamb waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.