Abstract
AbstractWhen the number of relevant propagation paths between the transmitter and the receiver is small and/or when they are not separable (i.e. the difference between the corresponding delays is smaller than the symbol duration), we can have deep fading effects and poor performance, especially for slow‐varying channels. In this case, the use of diversity techniques is strongly recommendable.In this paper, we consider an single‐carrier‐based (SC) block transmission, employing frequency domain equalisation (FDE) receivers and we present a frequency diversity technique that allows high spectral efficiencies. As with conventional frequency diversity techniques, L replicas of a given signal are transmitted at L different frequencies. However, contrarily to conventional frequency diversity schemes, up to L users can share this set of L frequency bands. Since this leads to strong interference levels, we propose an iterative, frequency‐domain receiver where all the users sharing the L frequencies are jointly detected.Our performance results show that the proposed frequency diversity scheme allows high diversity gains, while keeping the spectral efficiency of conventional SC schemes. Moreover, we can cope with channels that can be severely time‐dispersive and/or can have deep fading effects. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.