Abstract

An important goal in ocean colour remote sensing is to accurately detect different phytoplankton groups with the potential uses including the validation of multi-phytoplankton carbon cycle models; synoptically monitoring the health of our oceans, and improving our understanding of the bio-geochemical interactions between phytoplankton and their environment. In this paper a new algorithm is developed for detecting three dominant phytoplankton size classes based on distinct differences in their optical signatures. The technique is validated against an independent coupled satellite reflectance and in situ pigment dataset and run on the 10-year NASA Sea viewing Wide Field of view Sensor (SeaWiFS) data series. Results indicate that on average 3.6% of the global oceanic surface layer is dominated by microplankton, 18.0% by nanoplankton and 78.4% by picoplankton. Results, however, are seen to vary depending on season and ocean basin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.