Abstract

Seismic facies analysis is a key component of Seismic interpretation workflow, as much information on depositional process, environment, reservoir architecture and potential can be determined from the seismic data. This enhances the seismic visibility of subtle stratigraphic features, and prediction of new prospects for drilling due to lateral continuity of sand bodies (the hydrocarbon reservoir) deposited within the sedimentary column. This study presents the results of the application of seismic amplitude inversion and spectral decomposition to differentiate lithofacies within a thin-sand reservoir and show their lateral and vertical continuity using amplitude-derived attributes (rock properties) in the interpretation of 3D seismic and well log data from “TOMBOY” field Niger Delta. A thin-sand reservoir was delineated from lithologic log signatures within the interval 11,135.61-11,210.35ft which corresponds to the time window 2.752 - 2.768secs on the seismic data along an arbitrary line drawn to connect the six wells (01-06) in the field. Crossplot of acoustic impedance against density across the reservoir bed showed three compartments interpreted as gas filled sand, oil filled sand and shale. The interpretation was enhanced via spectral analysis by computing frequency maps of acoustic impedance, density and velocity using discrete Fourier transform (DFT) technique at top (2.752sec) of the reservoir in terms of magnitude, phase and frequency. Phase response for the three attributes (acoustic impedance, density and velocity) showed lateral continuity and discontinuity of sand lithofacies at the various well locations which were not evident on their original amplitude time slice, while frequency response showed bed thickness, with low frequency indicating presence of hydrocarbon or sand rich beddings, while high frequency indicates thin shale beddings. It was observed that the top (2.752sec) of the reservoir for wells 02, 05, 01 and 04 showed low frequency values for the three attributes (acoustic impedance, density and velocity) which indicates potential zones for hydrocarbon production and development in the field, while wells 03 and 06 within the same time slice (2.752sec) showed a higher value in acoustic impedance frequency, density frequency and velocity frequency and suggests the presence of thin shale facies at the top (2.752sec) of the thin-sand reservoir. By defining the lateral and vertical continuity of sand facies within the reservoir bed, hydrocarbon fairways were better defined and knowledge of this can be incorporated into drilling decisions for field development. The results gave enhanced structural disposition of the reservoir bed and more insights into the variation of sand lithofacies with depth. Keywords: Lithofacies, Amplitude inversion, Geologic transform, Seismic attributes, Cross plots and Spectral decomposition. DOI : 10.7176/JEES/9-3-14 Publication date :March 31 st 2019

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.