Abstract
Advective processes are of central importance in many applications and their treatment is crucial in the numerical modelling of the transport of trace constituents in atmospheric models. High-order numerical methods offer the promise of accurately capturing these advective processes in atmospheric flows and have been shown to efficiently scale to large numbers of processors. In this paper, a conservative transport scheme based on the nodal high-order spectral finite volume method is developed for the cubed-sphere. A third-order explicit strong stability preserving scheme is employed for the time integration. The reconstruction procedure which we developed avoids the (expensive) calculation of the inverse of the reconstruction matrix. Flux-corrected transport algorithm is implemented to enforce monotonicity in the two-dimensional transport scheme. Two standard advection tests, a solid-body rotation and a deformational flow, were performed to evaluate the spectral finite volume method optionally combined with a flux-corrected transport scheme. Spectral accuracy in space is demonstrated with a linear wave equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.