Abstract

The spectral excess theorem‎, ‎due to Fiol and Garriga in 1997‎, ‎is an important result‎, ‎because it gives a good characterization‎ ‎of distance-regularity in graphs‎. ‎Up to now‎, ‎some authors have given some variations of this theorem‎. ‎Motivated by this‎, ‎we give the corresponding result by using the Laplacian spectrum for digraphs‎. ‎We also illustrate this Laplacian spectral excess theorem for digraphs with few Laplacian eigenvalues and we show that any strongly connected and regular digraph that has normal Laplacian matrix with three distinct eigenvalues‎, ‎is distance-regular‎. ‎Hence such a digraph is strongly regular with girth $g=2$ or $g=3$‎.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.