Abstract

The acidic sulfate-rich waters of the Meridiani Planum region were potentially a habitable environment for iron-oxidizing bacteria on ancient Mars. If life existed in this ancient martian environment, jarosite minerals precipitating in these waters may record evidence of this biological activity. Since the Meridiani jarosite is thermodynamically stable at the martian surface, any biosignatures preserved in the jarosites may be readily available for analysis in the current surface sediments during the ongoing robotic exploration of Mars. However, thermal decomposition experiments indicate that organic compound detection of sediments containing jarosite may be challenging when using pyrolysis experiments; the instrument commonly used to assess organic matter in martian samples. So, here, we assess if the biogenicity of the Meridiani-type jarosites can be determined using complimentary spectroscopic techniques also utilized during the robotic exploration of Mars, including the upcoming ExoMars2020 rover mission. An abiotic jarosite, synthesized following established protocols, and a biological jarosite counterpart, derived from a microbial enrichment culture of Rio Tinto river sediments, were used to compare four spectroscopy techniques employed in the robotic exploration of Mars (Raman spectroscopy, mid-infrared (IR) spectroscopy, visible near-infrared reflectance (VNIR) spectroscopy and Mössbauer spectroscopy) to determine if the complimentary information obtained using these instruments can help elucidate the biological influence of Meridiani-type jarosites. Raman spectral differences might be due to the presence of unreacted reagents in the synthetic spectra and not biological contributions. Reflectance (IR/VNIR) spectra might exhibit minor organic absorption contributions, but are observed in both sample spectra, and do not represent a biosignature. Mössbauer spectra show minor differences in fit parameters that are related to crystal morphology and are unrelated to the biological (i.e., organic) component of the system. Results of this study suggest that the identification of biosignatures in Meridiani-type jarosites using the in situ robotic exploration on Mars may be possible but will be challenging. Our work provides additional insight into extraterrestrial biosignature detection and data interpretation for Mars exploration and indicates that sample return missions are likely required to unequivocally resolve the possible biogenicity of the Meridiani sediments or other jarosite-containing sediments.

Highlights

  • Whether life ever existed in ancient environments on Mars is a fundamental, unanswered question that continues to motivate some of the exploration of the planet today

  • All of the peaks observed in each X-ray diffraction (XRD) pattern correspond to the d−spacings of jarosite (ICDD card no. 036-0427)

  • As there does not appear to be a clear, unequivocal signature indicative of biogenicity in our biological Meridiani-type jarosite when compared to the abiotic synthetic sample, we suggest that our biological Meridiani-type jarosite when compared to the abiotic synthetic sample, we suggest discerning the biogenicity of a Meridiani-type jarosite during the in situ robotic exploration of Mars that discerning the biogenicity of a Meridiani-type jarosite during the in situ robotic exploration of using these spectroscopic techniques may be challenging and sample return may be required in order to unequivocally assess the biogenicity of the Meridiani sediments

Read more

Summary

Introduction

Whether life ever existed in ancient environments on Mars is a fundamental, unanswered question that continues to motivate some of the exploration of the planet today (e.g., the search for biosignatures with the ExoMars rover [1]). During the nearly sixty years of robotic exploration of Mars using the analytical instruments on probes, orbiters, and landers, our understanding about the planet has considerably advanced [2]); this includes an increased understanding about martian geology, the physical processes associated with the planetary surface, as well as the surface composition of the planet which includes the presence of potential ancient habitable environments [3]. The continued robotic exploration of Mars has revealed that sulfate minerals are ubiquitous on the planet’s surface [4]. The detection of jarosite by the Mars Exploration Rover (MER) Opportunity using Mössbauer spectroscopy at Meridiani

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call