Abstract
In this paper, an integral collocation approach based on Chebyshev polynomials for numerically solving biharmonic equations [N. Mai-Duy, R.I. Tanner, A spectral collocation method based on integrated Chebyshev polynomials for biharmonic boundary-value problems, J. Comput. Appl. Math. 201 (1) (2007) 30–47] is further developed for the case of irregularly shaped domains. The problem domain is embedded in a domain of regular shape, which facilitates the use of tensor product grids. Two relevant important issues, namely the description of the boundary of the domain on a tensor product grid and the imposition of double boundary conditions, are handled effectively by means of integration constants. Several schemes of the integral collocation formulation are proposed, and their performances are numerically investigated through the interpolation of a function and the solution of 1D and 2D biharmonic problems. Results obtained show that they yield spectral accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.