Abstract
This paper introduces a novel bagging ensemble classifier pruning approach. Most investigated pruning approaches employ heuristic functions to rank classifiers in the ensemble, and select part of them from the ranked ensemble, so redundancy may exist in the selected classifiers. Based on the idea that the selected classifiers should be accurate and diverse, we define classifier similarity according to the predictive accuracy and the diversity, and introduce a Spectral Clustering based classifier selection approach (SC). SC groups the classifiers into two clusters based on the classifier similarity, and retains one cluster of classifiers in the ensemble. Experimental results show that SC is competitive in terms of classification accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.