Abstract

This letter proposes a clustering-based approach for solving the underdetermined (i.e., fewer mixtures than sources) postnonlinear blind source separation (PNL BSS) problem when the sources are sparse. Although various algorithms exist for the underdetermined BSS problem for sparse sources, as well as for the PNL BSS problem with as many mixtures as sources, the nonlinear problem in an underdetermined scenario has not been satisfactorily solved yet. The method proposed in this letter aims at inverting the different nonlinearities, thus reducing the problem to linear underdetermined BSS. To this end, first a spectral clustering technique is applied that clusters the mixture samples into different sets corresponding to the different sources. Then, the inverse nonlinearities are estimated using a set of multilayer perceptrons (MLPs) that are trained by minimizing a specifically designed cost function. Finally, transforming each mixture by its corresponding inverse nonlinearity results in a linear underdetermined BSS problem, which can be solved using any of the existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.