Abstract
Abstract A spectral budget model is developed to describe the scaling behavior of the longitudinal turbulent velocity variance with the stability parameter and the normalized height in an idealized stably stratified atmospheric surface layer (ASL), where z is the height from the surface, L is the Obukhov length, and δ is the boundary layer height. The proposed framework employs Kolmogorov’s hypothesis for describing the shape of the longitudinal velocity spectra in the inertial subrange, Heisenberg’s eddy viscosity as a closure for the pressure redistribution and turbulent transfer terms, and the Monin–Obukhov similarity theory (MOST) scaling for linking the mean longitudinal velocity and temperature profiles to ζ. At a given friction velocity , reduces with increasing ζ as expected. The model is consistent with the disputed z-less stratification when the stability correction function for momentum increases with increasing ζ linearly or as a power law with the exponent exceeding unity. For the Businger–Dyer stability correction function for momentum, which varies linearly with ζ, the limit of the z-less onset is . The proposed framework explains why does not follow MOST scaling even when the mean velocity and temperature profiles may follow MOST in the ASL. It also explains how δ ceases to be a scaling variable in more strongly stable (although well-developed turbulent) ranges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.