Abstract

We present an approach for robust shape retrieval from databases containing articulated 3D models. Each shape is represented by the eigenvectors of an appropriately defined affinity matrix, forming a spectral embedding which achieves normalization against rigid-body transformations, uniform scaling, and shape articulation (i.e., bending). Retrieval is performed in the spectral domain using global shape descriptors. On the McGill database of articulated 3D shapes, the spectral approach leads to an absolute improvement in retrieval performance for both the spherical harmonic and the light field shape descriptors. The best retrieval results are obtained using a simple and novel eigenvalue-based descriptor we propose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.