Abstract
A fundamental challenge in sampled-data control arises when a continuous-time plant is subject to disturbances that possess significant frequency components beyond the Nyquist frequency of the feedback sensor. Such intrinsic difficulties create formidable barriers for fast high-performance controls in modern and emerging technologies such as additive manufacturing and vision servo, where the update speed of sensors is low compared with the dynamics of the plant. This paper analyzes spectral properties of closed-loop signals under such scenarios, with a focus on mechatronic systems. We propose a spectral analysis method that provides new understanding of the time- and frequency-domain sampled-data performance. Along the course of uncovering spectral details in such beyond-Nyquist controls, we also report a fundamental understanding on the infeasibility of single-rate high-gain feedback to reject disturbances not only beyond but also below the Nyquist frequency. New metrics and tools are then proposed to systematically quantify the limit of performance. Validation and practical implications of the limitations are provided with experimental case studies performed on a precision mirror galvanometer platform for laser scanning.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.