Abstract

Automatic document summarization aims to create a compressed summary that preserves the main content of the original documents. It is a well-recognized fact that a document set often covers a number of topic themes with each theme represented by a cluster of highly related sentences. More important, topic themes are not equally important. The sentences in an important theme cluster are generally deemed more salient than the sentences in a trivial theme cluster. Existing clustering-based summarization approaches integrate clustering and ranking in sequence, which unavoidably ignore the interaction between them. In this paper, we propose a novel approach developed based on the spectral analysis to simultaneously clustering and ranking of sentences. Experimental results on the DUC generic summarization datasets demonstrate the improvement of the proposed approach over the other existing clustering-based approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.