Abstract

A novel variational model is proposed to remove the multiplication noise in the synthetic aperture radar (SAR) images to provide a high quality of interpretation of SAR data. The model consists of the data fidelity term and Beltrami regularization term. The former ensures the convexity of the model and avoids the nonlinear image transformation. The latter restrains the staircase-like artifacts caused by total variation (TV) regularization and preserves the geometric structure of the image effectively. Experiments on both synthetic and real SAR data demonstrate that, compared with three state-of-the-art methods, the proposed method achieves competitive results both visually and quantitatively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.