Abstract

Phosphorus (Pi) starvation prevents a good match between light energy absorption and photosynthetic carbon metabolism, generating photo-reactive oxygen species (photo-ROS) in chloroplasts. Plants have evolved to withstand photo-oxidative stress, but the key regulatory mechanism underlying it remains unclear. In rice (Oryza sativa), DEEP GREEN PANICLE1 (DGP1) is robustly up-regulated in response to Pi deficiency. DGP1 decreases the DNA-binding capacities of the transcriptional activators GLK1/2 on the photosynthetic genes involved in chlorophyll biosynthesis, light harvesting, and electron transport. This Pi-starvation-induced mechanism dampens both electron transport rates through photosystem I and II (ETRI and ETRII) and thus mitigates the electron-excessive stress in mesophyll cells. Meanwhile, DGP1 hijacks glycolytic enzymes GAPC1/2/3, redirecting glucose metabolism toward the pentose phosphate pathway with superfluous NADPH production. Phenotypically, light irradiation induces O2 - production in Pi-starved WT leaves but is observably accelerated in dgp1 mutant and impaired in GAPCsRNAi and glk1glk2 lines. Interestingly, overexpressed DGP1 in rice caused hyposensitivity to ROS-inducers (catechin and methyl viologen), but the dgp1 mutant shows a similar inhibitory phenotype with the WT seedlings. Overall, the DGP1 gene serves as a specific antagonizer against photo-ROS in Pi-starved rice plants, which coordinates light-absorbing and anti-oxidative systems by orchestrating transcriptional and metabolic regulations, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call