Abstract
Type I interferons display a broad range of immunomodulatory functions. Interferon beta increases gene expression at the transcriptional level through binding of factors to the interferon-stimulated response element (ISRE) within the promoters of interferon-inducible genes, such as HLA class I. Despite mutation of the class I ISRE sequence within the nonclassical HLA-G class I gene promoter, we show that interferon beta enhances both transcription and cell surface expression of HLA-G in trophoblasts and amniotic and thymic epithelial cells that selectively express it in vivo. Deletion and mutagenesis analysis of a putative interferon-regulatory factor (IRF)-1 binding site within the HLA-G promoter show that HLA-G transactivation is mediated through an ISRE sequence 746 base pairs upstream from ATG, which is distinct from the interferon-responsive element described within proximal classical class I gene promoters. Electrophoretic mobility shift analysis and supershift analysis further demonstrate that interferon-responsive transcription factors, including IRF-1, specifically bind to the HLA-G ISRE. Our results provide evidence that IRF-1 binding to a functional ISRE within the HLA-G promoter mediates interferon beta-induced expression of the HLA-G gene. These observations are of general interest considering the implication of HLA-G in mechanisms of immune escape involved in fetal-maternal tolerance and other immune privilege situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.