Abstract
Inspired by the sensitivity of methanol and WGSR to Cu active site types, a specific defect type of Cu active site is proposed to facilitate methanol synthesis and effectively suppress WGSR to produce CO2. In this work, DFT calculations is implemented to investigate the detailed mechanism of syngas-to-methanol and WGSR over Cu catalysts including Cu active type with the point, flatted line, and stepped line defects. The results suggested that WGSR can be regulated by tuning the adsorption and dissociation ability of H2O over different Cu active sites to decrease CO2 selectivity. The relationship of GCN value and d-band center of active center with the activity of methanol and WGSR was proposed to screen out high-performance catalysts. This study provides theoretical basis for designing and optimizing Cu-based catalysts to suppress WGSR leading to lower CO2 selectivity by adjusting Cu active site to meet a specific defect type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.