Abstract

BackgroundThe immune-modulating potential of long-chain polyunsaturated fatty acids (LCPUFAs) based on their conversion into lipid mediators in inflammatory situations has been proven by several studies. Respecting the immune-modulative role of lipid mediators in bronchoconstriction, airway inflammation and resolution of inflammatory processes, LCPUFAs play an important role in asthma. To design a disease-specific and most beneficial LCPUFA supplementation strategy, it is essential to understand how asthma alters LCPUFA profiles. Therefore, this study characterizes the alterations of LCPUFA profiles induced by allergic asthma. In addition, this study explores whether a simple eicosapentaenoic acid (EPA) alone or a specific combined LCPUFA supplementation could restore imbalanced LCPUFA profiles.MethodsMice were sensitized with a daily dose of 40 μg house dust mite (HDM)-extract in a recall model and fed with either normal diet, EPA or a specific combined (sc)-LCPUFA supplementation containing EPA, docosahexaenoic acid (DHA), γ -linolenic acid (GLA) and stearidonic acid (SDA) for 24 days. After recall with HDM, mice were sacrificed and blood and lung tissue were collected. Fatty acid profiles were determined in plasma, blood cells and lung cells of asthmatic mice by capillary gas-chromatography.ResultsIn lung cells of asthmatic mice, arachidonic acid (AA, p < 0.001) and DHA (p < 0.01) were increased while dihomo-γ-linolenic acid (DGLA, p < 0.05) was decreased. EPA supplementation increased only EPA (p < 0.001) and docosapentaenoic acid (DPA, p < 0.001), but neither DGLA nor DHA in lung cells of asthmatic mice. In contrast, a specific combined dietary supplementation containing n-3 and n-6 LCPUFAs could decrease AA (p < 0.001), increase EPA (p < 0.001), DPA (p < 0.001) and DHA (p < 0.01) and could reverse the lack of DGLA (p < 0.05).ConclusionsIn summary, allergic asthma alters LCPUFA profiles in blood and lung tissue. In contrast to the EPA supplementation, the distinct combination of n-3 and n-6 LCPUFAs restored the LCPUFA profiles in lung tissue of asthmatic mice completely. Subsequently, sc-LCPUFA supplementation is likely to be highly supportive in limiting and resolving the inflammatory process in asthma.

Highlights

  • The immune-modulating potential of long-chain polyunsaturated fatty acids (LCPUFAs) based on their conversion into lipid mediators in inflammatory situations has been proven by several studies

  • While pro-inflammatory lipid mediators derive from n-6 arachidonic acid (AA) specialized pro-resolving mediators (SPMs) which can restore immune-homeostasis and induce broncho-protective mechanisms in the lung [5] mainly derive from n-3 LCPUFAs such as eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA)

  • To investigate the alterations of LCPUFA profiles in allergic asthma and the incorporation of LCPUFAs, the relative amount of distinct fatty acid species was determined in murine plasma as well as in blood and lung cells of mice by capillary gas-chromatography on day 35

Read more

Summary

Introduction

The immune-modulating potential of long-chain polyunsaturated fatty acids (LCPUFAs) based on their conversion into lipid mediators in inflammatory situations has been proven by several studies. Lipid mediators derived from omega-3 (n-3) and omega-6 (n-6) long-chain polyunsaturated fatty acids (LCPUFAs) play a key role in the initiation, maintenance and resolution of these inflammatory reactions [3]. Upon allergen exposure such as house dust mite (HDM) [4], LCPUFAs are released out of the cell membrane phospholipids by phosphatidylcholin-2-acylhydrases (PLA2) to be converted into lipid mediators through oxygenation by cyclooxygenases and lipoxygenases. EPA-, DPAand DHA-derived SPMs promote resolution processes and they have been described to reduce eosinophilic accumulation in tissue, Th2 cytokine production and AHR due to an enhanced allergen phagocytosis and clearance by macrophages [3, 7,8,9,10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call