Abstract
In this paper, we study the estimation of motion direction prediction for fast motion and propose a threshold-based human target detection algorithm using motion vectors and other data as human target feature information. The motion vectors are partitioned into regions by normalization to form a motion vector field, which is then preprocessed, and then the human body target is detected through its motion vector region block-temporal correlation to detect the human body motion target. The experimental results show that the algorithm is effective in detecting human motion targets in videos with the camera relatively stationary. The algorithm predicts the human body position in the reference frame of the current frame in the video by forward mapping the motion vector of the current frame, then uses the motion vector direction angle histogram as a matching feature, and combines it with a region matching strategy to track the human body target in the predicted region, thus realizing the human body target tracking effect. The algorithm is experimentally proven to effectively track human motion targets in videos with relatively static backgrounds. To address the problem of sample diversity and lack of quantity in a multitarget tracking environment, a generative model based on the conditional variational self-encoder conditional generation of adversarial networks is proposed, and the performance of the generative model is verified using pedestrian reidentification and other datasets, and the experimental results show that the method can take advantage of the advantages of both models to improve the quality of the generated results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.