Abstract

BackgroundTheory in ecology points out the potential link between the degree of specialisation of organisms and their responses to disturbances and suggests that this could be a key element for understanding the assembly of communities. We evaluated this question for the arable weed flora as this group has scarcely been the focus of ecological studies so far and because weeds are restricted to habitats characterised by very high degrees of disturbance. As such, weeds offer a case study to ask how specialization relates to abundance and distribution of species in relation to the varying disturbance regimes occurring in arable crops.ResultsWe used data derived from an extensive national monitoring network of approximately 700 arable fields scattered across France to quantify the degree of specialisation of 152 weed species using six different ecological methods. We then explored the impact of the level of disturbance occurring in arable fields by comparing the degree of specialisation of weed communities in contrasting field situations.The classification of species as specialist or generalist was consistent between different ecological indices. When applied on a large-scale data set across France, this classification highlighted that monoculture harbour significantly more specialists than crop rotations, suggesting that crop rotation increases abundance of generalist species rather than sets of species that are each specialised to the individual crop types grown in the rotation. Applied to a diachronic dataset, the classification also shows that the proportion of specialist weed species has significantly decreased in cultivated fields over the last 30 years which suggests a biotic homogenization of agricultural landscapes.ConclusionsThis study shows that the concept of generalist/specialist species is particularly relevant to understand the effect of anthropogenic disturbances on the evolution of plant community composition and that ecological theories developed in stable environments are valid in highly disturbed environments such as agro-ecosystems. The approach developed here to classify arable weeds according to the breadth of their ecological niche is robust and applicable to a wide range of organisms. It is also sensitive to disturbance regime and we show here that recent changes in agricultural practices, i.e. increased levels of disturbance have favoured the most generalist species, hence leading to biotic homogenisation in arable landscapes.

Highlights

  • Theory in ecology points out the potential link between the degree of specialisation of organisms and their responses to disturbances and suggests that this could be a key element for understanding the assembly of communities

  • Classification of weed species along the gradient of specialization In total, 152 weed species were frequent enough to estimate their degree of specialisation (IS) with six different indices (See additional file 1: Classification of arable weed species according to their niche breadth)

  • Our results suggest that in maize grown in a rotation, the annual change of crop sowing dates and associated practices have caused a shift in the weed flora in favour of ‘germination generalist’, i.e. species that can germinate all-year-round or at least in both autumn and spring (Polygonum aviculare, Lolium multiflorum, Alopecurus myosuroides, Anagallis arvensis, Galium aparine, Fumaria officinalis, Cirsium arvense and Viola arvensis) [32]

Read more

Summary

Introduction

Theory in ecology points out the potential link between the degree of specialisation of organisms and their responses to disturbances and suggests that this could be a key element for understanding the assembly of communities. We evaluated this question for the arable weed flora as this group has scarcely been the focus of ecological studies so far and because weeds are restricted to habitats characterised by very high degrees of disturbance. The concept of ecological niche as a hypothetical multidimensional space [1] has boosted the exploration of niche properties [2,3,4] and has enabled generalist and specialist species to be distinguished according to their respective niche breadth. In parallel to species extinction, this so called ‘biotic homogenization’ process would characterize the biodiversity crisis [17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call