Abstract
Mild mitochondrial uncoupling offers therapeutic benefits for various diseases like obesity by regulating cellular energy metabolism. However, effective chemical intervention tools for inducing mild mitochondria-targeted uncoupling are limited. Herein, we have developed a mitochondria-targeted H2S prodrug M1 with a unique property of on-demand photoactivated generation of H2S accompanied by self-reporting fluorescence for real-time tracking. Upon photoirradiation, M1 decomposes in mitochondria to generate H2S and a turn-on fluorescent coumarin derivative for the visualization and quantification of H2S. M1 is confirmed to induce reactive oxygen species (ROS)-dependent mild mitochondrial uncoupling, activating mitochondria-associated adenosine monophosphate-activated protein kinase (AMPK) to suppress palmitic acid (PA)-induced lipid deposition in hepatocytes. The uncoupling functions induced by M1 are strictly controlled in mitochondria, representing a fresh strategy to prevent lipid deposition and improve metabolic syndrome by increasing cellular energy expenditure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.