Abstract
Pearl millet is a major cereal crop that feeds more than 90 million people worldwide in arid and semi-arid regions. The stalk phenotypes of Poaceous grasses are critical for their productivity and stress tolerance; however, the molecular mechanisms governing stalk development in pearl millet remain to be deciphered. In this study, we spatiotemporally measured 19 transcriptomes for stalk internodes of four different early developmental stages. Data analysis of the transcriptomes defined four developmental zones on the stalks and identified 12 specific gene sets with specific expression patterns across the zones. Using weighted gene co-expression network analysis (WGCNA), we found that two co-expression modules together with candidate genes were involved in stalk elongation and the thickening of pearl millet. Among the elongation-related candidate genes, we established by SELEX that a MYB-family transcription factor PMF7G02448 can bind to the promoters of three cell wall synthases genes (CesAs). In summary, these findings provide insights into stalk development and offer potential targets for future genetic improvement in pearl millet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.