Abstract

Spinal cord injury (SCI) triggers a cascade of intricate molecular and cellular changes that determine the outcome. In this study, we resolve the spatiotemporal organization of the injured mouse spinal cord and quantitatively assess in situ cell-cell communication following SCI. By analyzing existing single-cell RNA sequencing datasets alongside our spatial data, we delineate a subpopulation of Igfbp2-expressing astrocytes that migrate from the white matter (WM) to gray matter (GM) and become reactive upon SCI, termed Astro-GMii. Further, Igfbp2 upregulation promotes astrocyte migration, proliferation, and reactivity, and the secreted IGFBP2 protein fosters neurite outgrowth. Finally, we show that IGFBP2 significantly reduces neuronal loss and remarkably improves the functional recovery in a mouse model of SCI invivo. Together, this study not only provides a comprehensive molecular atlas of SCI but also exemplifies how this rich resource can be applied to endow cells and genes with functional insight and therapeutic potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.