Abstract

This paper proposes a method for clustering asynchronous events generated upon scene activities by a dynamic 3D vision system. The inherent detection of moving objects offered by the dynamic stereo vision system comprising a pair of dynamic vision sensors allows event-based stereo vision in real-time and a 3D representation of moving objects. The clustering method exploits the sparse spatio-temporal representation of sensor's events for real-time detection and separation between moving objects. The method makes use of density and distance metrics for clustering asynchronous events generated by scene dynamics (changes in the scene). It has been evaluated on clustering the events of moving persons across the sensor field of view. Tests on real scenarios with more than 100 persons show that the resulting asynchronous events can be successfully clustered and the persons can be detected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.