Abstract
Aerosol Optical Depth (AOD) is a key parameter in defining the characteristics of atmospheric aerosols, evaluating atmospheric pollution, and studying aerosol radiative climate effects. However, a large amount of the AOD data obtained by satellite remote sensing are missing due to cloud cover and other factors. To obtain AOD data with continuous distribution in space, this study considers the spatial and temporal correlation of AOD and proposes a spatio-temporal weighted filling method based on a sliding window to supply the missing AOD data blocks. The method uses the semivariogram and autocorrelation function to judge the spatial and temporal correlation of AOD and uses the AOD spatial autocorrelation threshold as the sliding window size, and then it builds a spatio-temporal weighted model for each window to fill in the missing values. We selected the area with full values for simulation. The results show that the accuracy of this method has been significantly improved compared with the mean filling method. The R2 reaches 0.751, the RMSE is 0.021, and the filling effect is smoother. Finally, this method was used to fill in the missing values of the MultiAngle Implementation of Atmospheric Correction (MAIAC) AOD in the Beijing–Tianjin–Hebei region in 2019, and AErosol RObotic NETwork (AERONET) AOD was used as the true value for testing. The results show that the filled AOD has a high correlation with AERONET AOD, the R2 is 0.785, and the RMSE is 0.120. A summary of the AOD values of the 13 cities in the Beijing–Tianjin–Hebei region shows that the values in the first and third quarters are higher than those in the second and fourth quarters, with the highest AOD value in March and the second highest in August; among the 13 cities, the AOD values in Chengde and Zhangjiakou are lower than those in the other cities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.