Abstract

Tracking multiple moving objects in real-time in a dynamic threat environment is an important element in national security and surveillance system. It helps pinpoint and distinguish potential candidates posing threats from other normal objects and monitor the anomalous trajectories until intervention. To locate the anomalous pattern of movements, one needs to have an accurate data association algorithm that can associate the sequential observations of locations and motion with the underlying moving objects, and therefore, build the trajectories of the objects as the objects are moving. In this work, we develop a spatio-temporal approach for tracking maritime vessels as the vessel’s location and motion observations are collected by an Automatic Identification System. The proposed approach is developed as an effort to address a data association challenge in which the number of vessels as well as the vessel identification are purposely withheld and time gaps are created in the datasets to mimic the real-life operational complexities under a threat environment. Three training datasets and five test sets are provided in the challenge and a set of quantitative performance metrics is devised by the data challenge organizer for evaluating and comparing resulting methods developed by participants. When our proposed track association algorithm is applied to the five test sets, the algorithm scores a very competitive performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.