Abstract
An efficient video retrieval system is essential to search relevant video contents from a large set of video clips, which typically contain several heterogeneous video clips to match with. In this paper, we introduce a content-based video matching system that finds the most relevant video segments from video database for a given query video clip. Finding relevant video clips is not a trivial task, because objects in a video clip can constantly move over time. To perform this task efficiently, we propose a novel video matching called Spatio-Temporal Pyramid Matching (STPM). Considering features of objects in 2D space and time, STPM recursively divides a video clip into a 3D spatio-temporal pyramidal space and compares the features in different resolutions. In order to improve the retrieval performance, we consider both static and dynamic features of objects. We also provide a sufficient condition in which the matching can get the additional benefit from temporal information. The experimental results show that our STPM performs better than the other video matching methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.