Abstract
The time-series data generated by turbofan engines has a great degree of complexity and dynamics. At present, recurrent neural networks are commonly used to model and forecast the remaining useful life (RUL). The relationship of the sample data is not taken into account, and there are issues such as gradient explosion. In view of this, a spatio-temporal attention model is proposed, which comprehensively relates to the temporal association of data features and the hidden state of data features in space. At the same time, position coding is performed on the temporal relationship, avoiding the use of recurrent neural networks. Experimental results show that by combining the two dimensions, the predictive performance of the model is significantly improved. Compared with different methods on the four data sets of the commercial modular aerospace propulsion system simulation (C-MAPSS), the stability and prediction accuracy of the spatio-temporal attention model are better than that of alternative methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.