Abstract

Rician noise removal is an important problem in magnetic resonance (MR) imaging. Among the existing approaches, the variational method is an essential mathematical technique for Rician noise reduction. The previous variational methods mainly employ the total variation (TV) regularizer, which is a first-order term. Although the TV regularizer is able to remove noise while preserving object edges, it suffers the staircase effect. Besides, the adaptability has received little research attention. To this end, we propose a spatially variant high-order variational model (SVHOVM) for Rician noise reduction. We introduce a spatially variant TV regularizer, which can adjust the smoothing strength for each pixel depending on its characteristics. Furthermore, SVHOVM utilizes the bounded Hessian (BH) regularizer to diminish the staircase effect generated by the TV term. We develop a split Bregman algorithm to solve the proposed minimization problem. Extensive experiments are performed to demonstrate the superiority of SVHOVM over some existing variational models for Rician noise removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.