Abstract
This article develops an approximate N-mixture model for infectious disease counts that accounts for under-reporting as well as spatial dependence induced by person-to-person spread of disease. We employ the model to estimate actual case counts in Oregon of chlamydia, an easily-treated but usually asymptomatic sexually transmitted disease. We describe a combined parametric bootstrap to account for uncertainty in parameter estimates as well as sampling variability in actual case counts. A simulation study illustrates that our method performs well in many scenarios when the model is correctly specified, and also gives reasonable results when the model is misspecified, and no spatial dependence exists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.