Abstract

Spatially-explicit individual-based simulation models provide a valuable tool for exploring complex ecological and evolutionary processes that are not easily empirically measured. Here, we present modifications of a spatially-explicit individual-based simulation model (CDMetaPOP) to accommodate a two-species system and simulations involving interspecific hybridization. We first describe how a hybrid (H) index is used to distinguish individuals of interspecific descent from those of either parental species. User-defined thresholds provide flexibility in the degree of admixture tolerated for classifying ‘pure’ individuals. We then detail relationships further informed by the H index, including individual growth, temperature-based fitness and selection, and mate preference behavior. Empirically derived species- and system-specific information can be incorporated into these relationships, for example, to produce differential growth among hybrids and parental species. Lastly, we demonstrate an application of this simulation framework by exploring the relative effects of temperature-based selection, mate preference behavior, and hybrid fitness on the rate and spatial extent of sympatric hybridization between two native riverine fish species, bull trout (Salvelinus confluentus) and Dolly Varden (Salvelinus malma), in the upper Skagit River system (United States and Canada). Results from this demonstration provide guidance for future empirical studies of bull trout, a federally threatened species. Understanding factors that contribute to the initiation and maintenance of hybridization, as well as the ecological and evolutionary consequences of this phenomenon, is of increasing importance given shifting species ranges due to large-scale landscape modification and a changing global climate. Our framework can be used to study a wide range of hybridization dynamics in any terrestrial or aquatic system, including comparisons of distinct environmental conditions or potential management responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.