Abstract

We propose and investigate novel max-flow models in the spatially continuous setting, with or without i priori defined supervised constraints, under a comparative study of graph based max-flow/min-cut. We show that the continuous max-flow models correspond to their respective continuous min-cut models as primal and dual problems. In this respect, basic conceptions and terminologies from discrete max-flow/min-cut are revisited under a new variational perspective. We prove that the associated nonconvex partitioning problems, unsupervised or supervised, can be solved globally and exactly via the proposed convex continuous max-flow and min-cut models. Moreover, we derive novel fast max-flow based algorithms whose convergence can be guaranteed by standard optimization theories. Experiments on image segmentation, both unsupervised and supervised, show that our continuous max-flow based algorithms outperform previous approaches in terms of efficiency and accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.