Abstract

Accurate image segmentation is an essential step in image processing, where Gaussian mixture models with spatial constraint play an important role. Nevertheless, most methods suffer from one or more challenges such as limited robustness to noise, over-smoothness for segmentations, and lack of flexibility to fit the observed data. To address these issues, in this paper, we propose a generative asymmetric Gaussian mixture model with spatial constraint for image segmentation. The asymmetric distribution is modified to be easily incorporated the spatial information. Then our asymmetric model can be constructed based on the posterior and prior probabilities of within-cluster and between-cluster. Based on the Kullback-Leibler divergence, we introduce two pseudo-likelihood quantities which consider the neighboring priors of within-cluster and between-cluster. Finally, we derive an expectation maximization algorithm to maximize the approximation of the data log-likelihood. We compare our algorithm with state-of-the-art segmentation approaches to demonstrate the superior performance of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.