Abstract
We consider a class of stochastic PDEs of Burgers type in spatial dimension 1, driven by space-time white noise. Even though it is well known that these equations are well posed, it turns out that if one performs a spatial discretization of the nonlinearity in the "wrong" way, then the sequence of approximate equations does converge to a limit, but this limit exhibits an additional correction term. This correction term is proportional to the local quadratic cross-variation (in space) of the gradient of the conserved quantity with the solution itself. This can be understood as a consequence of the fact that for any fixed time, the law of the solution is locally equivalent to Wiener measure, where space plays the role of time. In this sense, the correction term is similar to the usual It\^{o}-Stratonovich correction term that arises when one considers different temporal discretizations of stochastic ODEs.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.