Abstract

The human visual system is sensitive to relative differences in luminance, but light transport simulation algorithms based on Metropolis sampling often result in a highly nonuniform relative error distribution over the rendered image. Although this issue has previously been addressed in the context of the Metropolis light transport algorithm, our work focuses on Metropolis photon tracing. We present a new target function (TF) for Metropolis photon tracing that ensures good stratification of photons leading to pixel estimates with equalized relative error. We develop a hierarchical scheme for progressive construction of the TF from paths sampled during rendering. In addition to the approach taken in previous work, where the TF is defined in the image plane, ours can be associated with compact spatial regions. This allows us to take advantage of illumination coherence to more robustly estimate the TF while adapting to geometry discontinuities. To sample from this TF, we design a new replica exchange Metropolis scheme. We apply our algorithm in progressive photon mapping and show that it often outperforms alternative approaches in terms of image quality by a large margin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.