Abstract
We propose a spatial autoregressive stochastic frontier model, which allows for the endogeneity in both the frontier and environmental variables (i.e., endogeneity due to correlation of inefficiency term and two-sided error term). The model parameters are estimated using a single-stage control function approach. Monte Carlo simulations show that our proposed model and approach perform well in finite samples. We employed our methodology to the Chinese chemicals firm data and found evidence for both spatial effects and endogeneity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.